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Ocean color algorithms that rely on “atmospherically corrected” nadir water-leaving radiances to infer informa-
tion about marine constituents such as the chlorophyll concentration depend on a reliable method to convert the
angle-dependent measured radiances from the observation direction to the nadir direction. It is also important to
convert the measured radiances to the nadir direction when comparing and merging products from different
satellite missions. The standard correction method developed by Morel and coworkers requires knowledge of
the chlorophyll concentration. Also, the standard method was developed based on the Case 1 (open ocean)
assumption, which makes it unsuitable for Case 2 situations such as turbid coastal waters. We introduce a neural
network method to convert the angle-dependent water-leaving radiance (or the corresponding remote sensing
reflectance) from the observation direction to the nadir direction. This method relies on neither an “atmospheric
correction” nor prior knowledge of the water constituents or the inherent optical properties. It directly converts
the remote sensing reflectance from an arbitrary slanted viewing direction to the nadir direction by using a trained
neural network. This method is fast and accurate, and it can be easily adapted to different remote sensing instru-
ments. Validation using NuRADS measurements in different types of water shows that this method is suitable for
both Case 1 and Case 2 waters. In Case 1 or chlorophyll-dominated waters, our neural network method produces
corrections similar to those of the standard method. In Case 2 waters, especially sediment-dominated waters, a
significant improvement was obtained compared to the standard method. © 2015 Optical Society of America

OCIS codes: (010.4450) Oceanic optics; (010.5620) Radiative transfer; (280.0280) Remote sensing and sensors; (290.1483) BSDF,

BRDF, and BTDF.
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1. INTRODUCTION

The water-leaving radiance (Lw) and the corresponding remote
sensing reflectance (Rrs), defined as Rrs � Lw∕E0�

d , where E0�
d

is the downward irradiance just above the ocean surface,
are standard products in most operational ocean color algo-
rithms from which other ocean color products, such as the
chlorophyll-a concentration (CHL-a) or inherent optical prop-
erties (IOPs) of the water are derived. Hence, the accuracy of
the water-leaving radiance or the remote sensing reflectance is
of great importance to obtaining reliable ocean color products.

The water-leaving radiance (Lw) is the upward radiance in
the water that is transmitted through the water–air interface.
When attenuated direct sunlight and diffuse skylight penetrate
the water–air interface and propagate into the water, some of
the light will be scattered by seawater and its embedded con-
stituents and propagate in the upward direction. A fraction of

that light will eventually be transmitted through the water–air
interface and leave the ocean. This fraction is known as the
“water-leaving radiance”. Therefore, the water-leaving radiance
depends on: (i) illumination conditions at the ocean surface
[e.g., clouds and aerosols will attenuate direct sunlight and re-
duce the magnitude and change the angular distribution of the
diffuse radiation (skylight) reaching the ocean surface]; (ii) the
optical properties of the water, especially the scattering by par-
ticles embedded in the water since scattering by pure water is
nearly isotropic; and (iii) the sun-sensor geometry, i.e., the solar
zenith angle θ0, the viewing zenith angle θ (the corresponding
angle in the water is θ 0), and the relative azimuth angle between
the sun and the viewing direction (Δϕ) as illustrated in Fig. 1.
The concept of a normalized water-leaving radiance (nLw) was
introduced by Gordon and Clark [1] as the radiance that would
be obtained if the Sun were at zenith (θ0 � 0°), the atmosphere

10 Vol. 55, No. 1 / January 1 2016 / Applied Optics Research Article

1559-128X/16/010010-12$15/0$15.00 © 2016 Optical Society of America

http://dx.doi.org/10.1364/AO.55.000010


absent, and the sensor looking at nadir (θ � 0°). Clearly, the
dependence on geometry has been removed in the normalized
water-leaving radiance by fixing the position of the sun and the
sensor, and assuming a black sky removes the dependence on
illumination as well. Hence, the normalized water-leaving radi-
ance nLw and its associated remote-sensing reflectance nRrs de-
pend only on the properties of the water and can be directly used
to derive ocean color products. Standard ocean color algorithms
rely on an imperfect “atmospheric correction” to remove the in-
fluence of the atmosphere in order to infer the water-leaving ra-
diance Lw�λ; θ0; θ;Δϕ� and its nadir counterpart Lw�λ; θ0�,
where λ is the wavelength. Note that Lw�λ; θ0� and its associated
remote sensing reflectance Rrs�λ; θ0� depend on the solar zenith
angle θ0, and is therefore apart from the imperfect atmospheric
correction and different from the “ideal” nLw and nRrs. In this
paper, we will focus on the remote-sensing reflectance at nadir,
Rrs�λ; θ0; τa; IOP� ≡ Rrs�λ; θ0; θ � 0; τa; IOP�, and its angle-
dependent counterpart, Rrs�λ; θ0; θ;Δϕ; τa; IOP�, where τa
and IOP are used to indicate that Rrs depends on the optical
properties of the atmosphere, signified by τa, as well as those
of the water, signified by IOP.

The dependence of Rrs�λ; θ0; θ;Δϕ; τa; IOP� on the geom-
etry, referred to as the bidirectional reflectance distribution
function (BRDF), is caused primarily by the anisotropy of
the scattering phase function of the particles embedded in
the water. The BRDF has been studied extensively in the past
few decades, because satellite sensors do not measure the nadir
water-leaving radiance directly. Therefore, a method to derive
the nadir water-leaving radiance from the angle-dependent
water-leaving radiance is required. Morel and Gentili [2–4]
published a series of papers on this topic in the 1990s and
showed that the remote sensing reflectance just above the ocean
surface (0�) at any geometry can be approximated by

Rrs�0�; θ0; θ;Δϕ; τa;W ; IOP; λ�

� R�θ0; θ 0; W ; λ� × f �θ0; τa;W ; IOP; λ�
Q�θ0; θ 0;Δϕ; τa;W ; IOP; λ�

�
bb�λ�
a�λ�

�
;

(1)

where the angles θ0, θ, and Δϕ are given in Fig. 1 andW is the
wind speed. In general, the wind speed is required because the
BRDF depends also on surface roughness, which may be para-
meterized in terms of the wind speed [5]. The dimensionless
functionRmerges all the refraction and reflection effects when
downward and upward radiances propagate through the water–
air interface. The function f relates the irradiance reflectance
(R � Eu∕Ed ) to the IOPs; the function Q is a bidirectional
function, defined as Q�θ0; θ 0;Δϕ� � E0−

u ∕L0
−

u �θ0; θ 0;Δϕ�.
In 2002, Morel et al. [6] proposed an algorithm (denoted
by MAG02 in this paper) to derive the nadir remote sensing
reflectance Rrs�0�; θ0; θ � 0; τa; IOP� as well as the normal-
ized remote sensing reflectance Rrs�0�; θ0 � 0; θ � 0; τa �
0; IOP� from the angle-dependent remote sensing reflectance
Rrs�0�; θ0; θ;Δϕ; τa ≈ 0; W ; IOP; λ� using a lookup table that
takes the three geometry angles and the chlorophyll-a concen-
tration as input (here, τa ≈ 0 is used to remind us that an im-
perfect atmospheric correction has been used to derive the
remote sensing reflectance from the measured top-of-the-
atmosphere radiance). The MAG02 algorithm has been widely
used in current ocean color algorithms as a standard correction
method and it works well in open ocean (Case 1) water [7] in
which the IOPs can be characterized in terms of the chloro-
phyll-a concentration. However, many areas of the ocean, es-
pecially coastal waters, cannot be classified as Case 1 due to the
complexity of the water. These waters are therefore referred to
as Case 2 waters. Many instruments are located in Case 2 water
areas such as the AERONET-OC network, which was designed
to provide validation data for ocean color products. The
MAG02 algorithm is not suitable for Case 2 waters and larger
uncertainties are observed in the nadir remote sensing reflec-
tance when this method is applied to Case 2 waters [8].

Several attempts have been made to develop a BRDF cor-
rection method that can be applied to Case 2 waters. The basic
idea is to merge the three functionsR, f , andQ in Eq. (1) into
one generalized function, F , that only varies with geometry for
given values of the IOPs. Lee et al. [9] proposed an algorithm to
derive nadir remote sensing reflectance, Rrs�λi ; θ0�, from the
angular remote sensing reflectance, Rrs�λi ; θ0; θ;Δϕ�. The
Lee et al. algorithm is based on the assumptions that the remote
sensing reflectance can be written as a product of a function of
the water IOPs expressed as Func(IOP) and a function G as
follows:

Rrs�λi ; θ0; θ;Δϕ� � G�λi ; θ0; θ;Δϕ� × Func�IOP�; (2)

where the generalized function G was generated from
Hydrolight radiative transfer simulations using a large set of
different water IOPs, and therefore it also depends on water
IOPs. The algorithm first derives the water IOPs from
Rrs�λi ; θ0; θ;Δϕ� using a quasi-analytical algorithm and deter-
mines the functionG that best fitsRrs�λi ; θ0; θ;Δϕ�. In a second
step, Rrs�λi ; θ0� was derived from the retrieved water IOPs and
the value of the function G evaluated in the nadir direction,
namely G0. Gilerson et al. [10] proposed a similar algorithm,
except that they first derive the single backscattering albedo,
ω�λi� � bb�λi�∕�a�λi� � bb�λi��, from Rrs�θ0; θ;Δϕ; λi� and
then use a function α�λi ; θ0; θ;Δϕ;ωi� obtained from radiative
transfer simulations to derive Rrs�λi ; θ0�. Both algorithms
operate on a wavelength by wavelength basis, and both achieved

Fig. 1. Schematic illustration of the sun-sensor geometry.
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improvements over theMAG02methodwhen applied toCase 2
waters.

In this paper, we develop a neural-network-based algorithm
that directly derives the entire spectral nadir remote sensing re-
flectance Rrs�λi ; θ0� from the angular value Rrs�λi ; θ0; θ;Δϕ�,
without any prior knowledge of the water IOPs. Figure 2 shows
two cases of simulated remote sensing reflectance, one for Case
1 water and one for Case 2 water. The difference in remote
sensing reflectance between Case 1 and Case 2 waters is signifi-
cant but, for each case, the difference is small between nadir
remote sensing reflectance Rrs�λi ; θ0� and angular remote sens-
ing reflectance Rrs�λi ; θ0; θ;Δϕ�. The spectral shape of the re-
mote sensing reflectance is important because it reflects the
water and atmospheric IOPs. Hence, for a specific set of water
and atmospheric IOPs, there should be a relation between the
spectrum of Rrs�λi ; θ0; θ;Δϕ� and Rrs�λi ; θ0�. In other words,
the spectral nadir reflectance Rrs�λi ; θ0� can be expressed as a
function of Rrs�λi ; θ0; θ;Δϕ�:

Rrs�λi ; θ0� �
R0

R
f 0

f
Q
Q0

Rrs�λi ; θ0; θ;Δϕ�; (3)

where R, f , and Q are the functions appearing in Eq. (1) and
R0, f 0, and Q0 are the values of the three functions evaluated
in the nadir direction. Our goal is to establish a direct connec-
tion between Rrs�λ; θ0; θ;Δϕ� and Rrs�λi ; θ0�. To achieve this
goal, we simulated Rrs�λ; θ0; θ;Δϕ� and Rrs�λi ; θ0� for a wide
range of water and atmospheric IOPs. Using this synthetic da-
taset, we then trained a neural network to establish a direct
connection between Rrs�λ; θ0; θ;Δϕ� and Rrs�λi ; θ0� for any
combination of water and atmospheric IOPs available in the
synthetic dataset. We have found that a radial basis function
neural network [11] is suitable to achieve our goal. Our algo-
rithm takes Rrs�λ; θ0; θ;Δϕ� values for a desired set of wave-
lengths as input to achieve maximum accuracy. If a different
set of wavelengths is desired, one can easily retrain the neural
network.

2. NEURAL NETWORK METHOD

A. Water-Leaving Radiance Simulation
The water-leaving radiance or remote sensing reflectance can be
simulated by solving the radiative transfer equation. In our
study, we used AccuRT, which is a radiative transfer model
(RTM) for the coupled atmosphere-ocean system based on
the discrete-ordinate method [12–16]. AccuRT is an accurate,
well-tested, and reliable RTM for the coupled system.We used a
13-layer atmosphere in AccuRT with a total height of 70 km,
based on the U.S. Standard atmosphere profile. The IOPs of
the atmospheric gas absorption were computed from a band
model [17]. The scattering phase function for atmospheric mol-
ecules is the Rayleigh phase function. Aerosols were added to the
bottom 2 kmof the atmosphere.We used the set of aerosol mod-
els proposed by Ahmad et al. [18] based on AERONET obser-
vations. There are 80 different aerosol models that vary with the
fraction of small aerosol particles (f a) and relative humidity.
This set of aerosol models is currently implemented in
NASA’s ocean color processing package SeaDAS. For the ocean,
we implemented a 100 m deep homogeneous layer, and we as-
sumed two types of embedded particles in the water, algal par-
ticles and nonalgal particles. In addition to particles, we also
added colored dissolved organicmatter in the water. The absorp-
tion and scattering coefficients and the scattering phase func-
tions of pure water and embedded particles (see Fig. 3) are
discussed in detail in Section 2.B.

The water-leaving radiance can be written as [4]

Lw�λ; θ;Δϕ� � Lu�0−; λ; θ 0;Δϕ� �1 − ρ�λ; θ
0; θ��

n�λ�2 ; (4)

where Lu�0−; λ; θ 0;Δϕ� is the upwelling radiance just below the
ocean surface, ρ�λ; θ 0; θ� is the Fresnel reflectance, and n�λ� is
the refractive index of water. The term �1−ρ�λ;θ 0 ;θ��

n�λ�2 is the transmit-
tance of thewater–air interface when light propagates fromwater
to air. In the nadir direction, the transmittance is frequently ap-
proximated as a constant (0.54). However, recent studies have
shown that this value is not always valid and a comprehensive
study of the transmittance at non-nadir directions is underway
[19]. In our study, we use a different approach. To obtain the
water-leaving radiance, we computed the upward radiance just
above the ocean surface twice using AccuRT. Assuming the
ocean to be black, i.e., totally absorbing (no scattering), we first
computed the upward radiance just above the ocean surface,
Lu;black�0�; λ; θ0; θ;Δϕ�, which includes the radiance due to
Fresnel reflection of direct attenuated sunlight and skylight
by the water–air interface but no radiance from the water.
The second time, we included the ocean with water and
its embedded constituents and computed the radiance
Lu�0�; λ; θ0; θ;Δϕ�, which included the water-leaving radiance
as well as the Fresnel reflected direct attenuated sunlight and sky-
light. Then the water-leaving radiance was computed from the
difference

Lw�0�; λ; θ0; θ;Δϕ� � Lu�0�; λ; θ0; θ;Δϕ�
− Lu;black�0�; λ; θ0; θ;Δϕ�: (5)

B. Water IOP Model
The total IOPs of the water, i.e., the total absorption coefficient
at�λ� and the total scattering coefficient bt�λ�, are due to

Fig. 2. Simulated remote sensing reflectance (Rrs) of two cases, blue
lines (bottom) for Case 1 water and red lines (top) for Case 2 water.
Solid lines are normalized remote sensing reflectances and dashed lines
are angular remote sensing reflectances.
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contributions from pure water, embedded particles, and col-
ored dissolved organic matter:

at�λ� � aw�λ� � ap�λ� � aCDOM�λ�: (6)

bt�λ� � bw�λ� � bp�λ�: (7)

For pure water, we use the absorption coefficient aw�λ�
based on data published by Pope and Fry (1997) [20] for wave-
lengths between 400 and 700 nm, and by Kou et al. [21] for
wavelengths between 720 and 900 nm. Pure water-scattering
coefficients bw�λ� are based on published data [22] and the
Rayleigh scattering phase function is given by [22]:

p�cos Θ� � 3

3� f
�1� f cos2 Θ�; (8)

where f � 1−ρ
1�ρ and ρ is the depolarization ratio attributed to

the anisotropy of the scatterer, which was set to be ρ � 0.0899.
The IOPs of the water constituents are usually derived from

a bio-optical model. In our study, we assumed that there are
two types of embedded particles in the water: (i) algal particles
(denoted by CHL), and (ii) nonalgal particles (denoted by
MIN), in addition to the colored dissolved organic matter
(CDOM). We used the CoastColor Round Robin (CCRR)
bio-optical model [23].

The absorption coefficient of the algal particles is given
by a nonlinear function of the Chlorophyll-a concentration
(CHL) [24]:

aCHL�λ� � A�λ� × CHLE�λ�; (9)

where A�λ� and E�λ� are given by Bricaud et al. [24]. The beam
attenuation coefficient for algal particles at 660 nm is given
by [25]:

cCHL�660� � 0.407 × CHL0.795; (10)

and the spectral variation is taken to be [6]:

cCHL�λ� � cCHL�660� × �λ∕660�η; (11)

where

η � 0.5 × �log10 CHL − 0.3� 0.02 < CHL < 2.0
η � 0 CHL ≥ 2.0

:

The spectral variation of the scattering coefficients for the
algal particles is given by the difference between the beam
attenuation and absorption coefficients:

bCHL�λ� � cCHL�λ� − aCHL�λ�: (12)

The scattering phase function for the algal particles is
assumed to be described by the Fournier–Forand phase func-
tion [26,27] (see Fig. 3):

pFF�cos Θ� �
1

4π�1 − δ�2δν fν�1 − δ� − �1 − δ
ν�

� 4

u2
�δ�1 − δν� − ν�1 − δ��g

� 1 − δν180
16π�δ180 − 1�δν180

�3 cos2 Θ − 1�; (13)

where ν � 0.5�3 − γ�, and γ is the slope of the particle size
distribution function (assumed to be a Junge or power law
distribution), which typically varies between 3.0 and 5.0;

u � 2 sin�Θ∕2�, δ ≡ δ�Θ� � u2
3�m−1�2 , δ180 � δ�Θ � 180°� �

4
3�m−1�2 , Θ is the scattering angle, and m is the refractive index.
In a previous study, Li et al. [28] used m � 1.0686 and
γ � 3.38, which correspond to a backscattering ratio of
0.0056. As noted by Mobley et al. [27], this choice of �m; γ�
values is consistent with a certain mixture of living microbes.

The absorption coefficient of the nonalgal particles at
443 nm is given by [29]:

aMIN�443� � 0.031 ×MIN; (14)

and the spectral variation can be written as [29]

aMIN�λ� � aMIN�443� exp�−0.0123�λ − 443��: (15)

The scattering coefficient of the nonalgal particles at 555 nm
is given by [30]:

bMIN�555� � 0.51 ×MIN; (16)

and the spectral variation of the beam attenuation coefficients
of the nonalgal particles is given by [30]:

cMIN�λ� � cMIN�555� × �λ∕555�−0.3749; (17)

where

cMIN�555� � aMIN�555� � bMIN�555� � 0.52 ×MIN:

The spectral variation of the scattering coefficients for the
nonalgal particles is given by the difference between the beam
attenuation and absorption coefficients:

bMIN�λ� � cMIN�λ� − aMIN�λ�: (18)

The average Petzold phase function [31] with a backscatter-
ing ratio of 0.019, as tabulated by Mobley [32], is used to de-
scribe the scattering phase function for nonalgal particles.

The total IOPs due to embedded particles are given by:

ap�λ� � aCHL�λ� � aMIN�λ�; (19)

bp�λ� � bCHL�λ� � bMIN�λ�: (20)

The spectral variation of the CDOM absorption is given by
an exponentially decreasing function [29]:

aCDOM�λ� � CDOM × exp�−0.0176�λ − 443��; (21)

where CDOM means the CDOM absorption at 443 nm.
The moment-fitting method of Hu et al. [33] was used to

compute Legendre expansion coefficients χl;PET and χl;FF for
the Petzold and FF scattering phase functions. The total
scattering phase function Legendre expansion coefficients χl
are given by

χl � f FF × χl;FF � f PET × χl;PET

� �1 − f FF − f PET� × χl;water; (22)

where f FF and f PET are the fractions of particles that scatter
according to the FF and Petzold phase functions defined as
f FF � bCHL∕bt and f PET � bMIN∕bt .

C. Neural Network Training
The radial basis function (RBF) neural network is an artificial
neural network that uses RBFs as neurons and can be used in a
wide range of applications [34]. The neural network needs to
be properly trained in order to work satisfactorily. During
the training, the neural network learns the pattern of the
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relation between the input and output dataset. We generated a
training dataset from our RTM, AccuRT. This training dataset
contains 30,000 data points of Lu�0�; θ0; θ;Δϕ� and
Lu;black�0�; θ0; θ;Δϕ� at seven wavelengths—412, 443, 490,
510, 560, 620, and 665 nm—which are similar to the wave-
lengths used in the MAG02 algorithm. The synthetic dataset
was generated in the following manner. First, we randomly se-
lected 5000 combinations of the aerosol optical depths at
865 nm (τa�865�), fraction of the small aerosol particles (f a),
relative humidity, and three ocean parameters: CHL, MIN, and
CDOM. In order to cover a wide range of water and atmos-
pheric IOPs, these six parameters were randomly sampled from
the following ranges in logarithmic space:

1. τa�865�: 0.001—0.5,
2. f a: 1—95 [%],
3. RH: 30—95 [%],
4. CHL: 0.01–100 [mg ·m−3],
5. MIN: 0.01–100 [g ·m−3],
6. CDOM: 0.001–10 [m−1].

Then, for each case in the 5000 combinations, we randomly
selected six combinations of solar zenith angles θ0, viewing
zenith angles θ, and relative azimuth angles Δϕ, which were
allowed to vary in the following ranges:

1. θ0: 0–80 [°],
2. θ: 0–70 [°],
3. Δϕ: 0–180 [°].

In addition to the randomly varied sun-sensor geometries,
the radiance in the nadir direction, i.e., θ � 0°, was always
computed and from it the remote sensing reflectance for each
case was derived. The solar irradiance just above the ocean sur-
face (E0�

d ) was also computed for each case. Then we computed
the remote sensing reflectance for every sun-sensor geometry in
each case:

Rrs�θ0; θ;Δϕ� �
Lw�0�; θ0; θ;Δϕ�

Ed �0��
; (23)

where Lw�0�; θ0; θ;Δϕ� is given by Eq. (5). The remote sens-
ing reflectances were rearranged into two groups. One group
included all the angle-dependent remote sensing reflectances
Rrs�λi ; θ0; θ;Δϕ�, while the other group included the spectrum
of the corresponding nadir remote sensing reflectances,
Rrs�λi ; θ0�. We then created a neural network with two hidden
layers. The first layer uses RBFs [11] as neurons and the second
layer uses linear function as neurons. The number of neurons is
the same in both layers and can be adjusted to meet the re-
quired accuracy. The input to our neural network training is
the three geometry angles plus the angle-dependent remote
sensing reflectances, [θ0; θ;Δϕ; Rrs�λi ; θ0; θ;Δϕ�], and the
output is the second group of the remote sensing reflectance
data, Rrs�λi ; θ0�, for each case and sun-sensor geometry con-
figuration. After the training, the nadir remote sensing reflec-
tance can be derived from a single equation:

Rrs�λi ; θ0� �
XN
j�1

aij exp
�
−b2

XN in

k�1

�pk − cjk�2
�
� d i; (24)

where N is the number of neurons, b and cjk are the bias and
weight in the first layer, and aij and d i are the weight and bias in

the second layer. These weights and biases are optimized from
the training procedure to minimize the error between the
neural-network-derived Rrs�λi ; θ0� and the actual Rrs�λi ; θ0�
values in the training dataset. N in is the number of input
parameters, which in our neural network equals 10:3 geometry
angles plus seven wavelengths. pk denotes the input parameters,
which in our case are the three geometry angles and the angle-
dependent remote sensing reflectances at each wavelength.

The training procedure iteratively creates the neural network
one RBF neuron at a time. The training starts by computing an
average value of the actual Rrs�λi ; θ0� over the 30,000 training
cases. The case that has the largest deviation from the average
value was picked, and the input of this case was used to create
the first RBF neuron, i.e., setting c1k � pk. The bias b was set
to 0.8326 for all RBF neurons. Then b and c1k were put into
Eq. (24) to solve for ai1 and d i and a network with one RBF
neuron was created. Then this one neuron network was used to
compute Rrs�λi ; θ0�, the error between neural network simu-
lated Rrs�λi ; θ0�, and the actual Rrs�λi ; θ0� was computed for
all input cases. The case with the largest error was used to create
the next RBF neuron. Then the two RBF neurons were in-
serted into Eq. (24) to solve for aij and d i and a network with
two RBF neurons was created. This procedure was repeated
iteratively until the error between the neural network derived
Rrs�λi ; θ0� and the actual Rrs�λi ; θ0� value reached a preset tol-
erance or the maximum number of neurons was reached. In our
study, we used 500 neurons in both layers.

3. VALIDATION OF THE NEURAL NETWORK
METHOD

A. Synthetic Data Analysis
We first tested our neural network algorithm with a synthetic
validation dataset. For this purpose we used the CCRR simu-
lation dataset [23], which is similar to the synthetic dataset
documented in IOCCG Report5 [35]. In this dataset, there
are 5000 combinations of the three ocean parameters, CHL,
MIN, and CDOM, paired with 5000 simulated normalized
remote sensing reflectances generated by the Hydrolight v5.0
RTM. The 5000 combinations of the ocean parameters are

Fig. 3. Fournier–Forand (FF), Petzold, and Rayleigh phase func-
tions used in this paper.
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sampled in such a manner that the covariation between any two
parameters matches that obtained from field measurements in
coastal waters around Europe [29]. Figure 4 shows the covaria-
tion (panels a, b, and c) and distribution (panel d) of the three
ocean parameters in this synthetic dataset.

We did a comparison between the Rrs�λi ; θ0� in the CCRR
simulation dataset and Rrs�λi� values generated by AccuRT, us-
ing the ocean parameters from the CCRR simulation dataset.
The match was very close, and the correlation between the two
datasets has an R2 value no less than 0.999 for all the wave-
lengths [36]. This good match means that AccuRT produces

output very close to that of Hydrolight. We then used the
5000 cases of CHL, MIN, and CDOM to generate a validation
dataset in the same way as we generated the training dataset.
The three aerosol parameters, τa�865�, f a, and RH, were still
randomly selected in the same range as described in
Section 2.C. The values of CHL, MIN, and CDOM are from
the 5000 simulation cases and, for each of the 5000 cases, we
randomly selected one solar zenith angle θ0, four viewing zenith
angles θ, and four relative azimuth angles Δϕ in the same range
as in Section 2.C., resulting in 80,000 cases for different sun-
sensor geometries, water, and atmospheric IOPs. The 80,000
cases were input into AccuRT to compute angle-dependent
remote sensing reflectances Rrs�λi ; θ0; θ;Δϕ� as well as the cor-
responding nadir remote sensing reflectances Rrs�λi ; θ0�.

The 80,000 validation data points were also divided into
two groups, one group including the angle-dependent remote
sensing reflectances Rrs�λi ; θ0; θ;Δϕ� and the other group in-
cluding the nadir remote sensing reflectances Rrs�λi ; θ0�. These
data were first used to do a statistical analysis of the differences
between the two groups, which shows the anisotropy of the
remote sensing reflectance. The results are shown in Fig. 5.
The first panel shows the distribution of the difference between
remote sensing reflectances Rrs�λi ; θ0; θ;Δϕ� and nadir remote
sensing reflectances Rrs�λi ; θ0� at 443 nm for all the 80,000
cases. The second panel shows the difference for two different
types of water. The green line represents clean or Case 1 water
and the red line represents moderate/turbid or Case 2 water.
The third panel shows how the anisotropy depends on the
sun-sensor geometry: the black line shows the variation with
solar zenith angle θ0, the red line shows the variation with view-
ing zenith angle θ, and the blue line shows the variation with
relative azimuth angle Δϕ. For other wavelengths, similar re-
sults were found, so here we just show one of them as an
example. This statistical analysis indicates that the remote sens-
ing reflectance is far from isotropic. For clean water, the
average difference between angle-dependent remote sensing

Fig. 4. Covariation and distribution of CHL, MIN, and CDOM in
the CCRR synthetic dataset. Panels (a), (b), and (c) show the cova-
riation between CHL and CDOM, CHL and MIN, and CDOM
andMIN, respectively. Panel (d) shows the distribution of CHL (green
solid line), MIN (blue dashed-dotted line), and CDOM (red dashed
line). The units of CHL, MIN, and CDOM are the same as in the first
three panels.

Fig. 5. Statistics of the percentage difference between the viewing angle-dependent Rrs�λi ; θ0; θ;Δϕ� and the nadir Rrs�λi ; θ0� for 80,000 sim-
ulation data. Panel 1 shows the distribution of the difference for all cases, panel 2 shows the distribution of the difference for “clean”
(CHL < 0.5�mg∕m3�, CDOM < 0.2�m−1�,MIN < 0.1�g∕m3�) and “moderate/turbid” (the rest of the data) waters, and panel 3 shows the depend-
ence on the sun-sensor geometry.
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reflectances and corresponding nadir remote sensing reflectan-
ces is 2.77%–5.09% for different wavelengths and the maxi-
mum is around 25%. For moderate/turbid water, the average
difference increases to 8.74%–9.95%, with a maximum around
56%. The anisotropy of the remote sensing reflectance has a
weak dependence on solar zenith angle and relative azimuth
angle, but depends strongly on viewing zenith angle.

We then applied our neural network algorithm to derive
nadir Rrs�λi ; θ0� from the viewing-angle-dependent
Rrs�λi ; θ0; θ;Δϕ� for the 80,000 validation data and compared
the neural-network-derived nadir remote sensing reflectance
RNN
rs �λi� with the AccuRT-generated remote sensing reflectance

RMod
rs �λi�. For comparison, we also applied the MAG02 algo-

rithm to our validation dataset. The MAG02 algorithm re-
quires CHL as input. However, in satellite remote sensing,
CHL is usually derived from maximum band ratio algorithm
(OC4) or the IOP model. To show the performance of the
MAG02 algorithm in the application to satellite remote sens-
ing, we applied the Ocean Color Chlorophyll-a Algorithm
OC4 v6 [37] to estimate the CHL from the angle-dependent
remote sensing reflectance Rrs�; λi ; θ0; θ;Δϕ� instead of using
the actual CHL that was used to generate the validation dataset.
Then the three geometry angles and the estimated CHL were
input into the MAG02 algorithm to evaluate the correction

factor that is used to derive nadir Rrs�λi ; θ0� values from the
corresponding Rrs�λi ; θ0; θ;Δϕ� values. The nadir remote sens-
ing reflectance derived from the MAG02 algorithm [denoted
RMAG
rs �λi ; θ0�] was also compared with the AccuRT-generated

remote sensing reflectance RMod
rs �λi ; θ0�. To quantify the per-

formance of the algorithms, we computed the coefficient of
determination (R2), percentage error (PE), and bias between
algorithm-derived and AccuRT-generated remote sensing re-
flectances. The coefficient of determination is given by:

R2 �

h
1
N

P�X − X̄ ��Y − Ȳ �
i
2

σ2X σ
2
Y

; (25)

where X � RNN∕MAG
rs �λi�, Y � RMod

rs �λi�, and σ is the stan-
dard deviation. The percentage error is

PE�%� �
����R

NN∕MAG
rs �λi� − RMod

rs �λi�
RMod
rs �λi�

���� × 100: (26)

and the bias is

bias�%� � RNN∕MAG
rs �λi� − RMod

rs �λi�
RMod
rs �λi�

× 100: (27)

Figure 6 shows the percentage error distribution in remote
sensing reflectances derived from the two algorithms. It is

Fig. 6. Distributions of the percentage error between RNN
rs and RMod

rs , and between RMAG
rs and RMod

rs for the validation data at six wavelengths: 412,
443, 490, 510, 560, and 665 nm. The blue solid line is the percentage error distribution of RNN

rs for all 80,000 validation data, the blue dashed line is
the percentage error distribution of RNN

rs for “clean” water cases, the red solid line with circles is the percentage error distribution of RMAG
rs for all

80,000 validation data, and the red dashed line with stars is the percentage error distribution of RMAG
rs for Case 1 water cases.
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quite noticeable that our NN algorithm outperforms the
MAG02 algorithm. The solid lines show a comparison using
the entire 80,000 validation dataset. The percentage error in our
NN algorithm is generally less than 5%, and the mean absolute
percentage error is 0.69%–0.94% for all wavelengths. The
MAG02 algorithm generally underestimated the remote sensing

reflectance, and the mean absolute percentage error is 2.00%–
3.99%. Considering that the MAG02 algorithm was designed
for Case 1 water, we applied a filter (CHL < 0.5�mg∕m3�,
CDOM < 0.2�m−1�,MIN < 0.1�g∕m3�) to the validation data-
set to select clean water cases and we found 1,568 qualified data
points. However, we need to point out that the filter we applied

Table 1. Coefficient of Determination (R2) of Derived Nadir Rrs
a

All Cases (N � 80;000) Clean (N � 1568) Moderate/Turbid (N � 78;432) θ > 60°�N � 9884�

λ [nm]
No

BRDF MAG02 NN
No

BRDF MAG02 NN
No

BRDF MAG02 NN
No

BRDF MAG02 NN

412 0.9820 0.9975 0.9996 0.9950 0.9970 0.9979 0.9821 0.9975 0.9996 0.9900 0.9935 0.9990
443 0.9803 0.9961 0.9995 0.9925 0.9962 0.9992 0.9803 0.9961 0.9995 0.9902 0.9902 0.9987
490 0.9805 0.9904 0.9995 0.9879 0.9944 0.9992 0.9803 0.9903 0.9995 0.9878 0.9800 0.9987
510 0.9818 0.9877 0.9996 0.9866 0.9942 0.9991 0.9815 0.9875 0.9996 0.9870 0.9754 0.9988
560 0.9855 0.9819 0.9997 0.9849 0.9938 0.9988 0.9853 0.9816 0.9997 0.9864 0.9662 0.9991
620 0.9896 0.9872 0.9998 0.9836 0.9953 0.9984 0.9895 0.9872 0.9998 0.9881 0.9739 0.9995
665 0.9901 0.9900 0.9998 0.9785 0.9916 0.9982 0.9900 0.9900 0.9998 0.9877 0.9786 0.9995
aFrom the synthetic dataset using the isotropic assumption, i.e., no BRDF correction, the MAG02 algorithm, and our NN algorithm results are shown at all

wavelengths for all synthetic data, “clear” water synthetic data, “moderate/turbid” water synthetic data, and data with large viewing angles.

Table 2. Mean Absolute PE [%] of Derived Nadir Rrs
a

All Cases (N � 80;000) Clean (N � 1568)
Moderate/Turbid
(N � 78;432) θ > 60°�N � 9884�

λ [nm]
No

BRDF MAG02 NN
No

BRDF MAG02 NN
No

BRDF MAG02 NN
No

BRDF MAG02 NN

412 8.62 2.00 0.80 2.77 2.04 0.73 8.74 2.00 0.80 19.07 2.51 1.53
443 9.26 2.02 0.78 3.15 2.06 0.72 9.38 2.02 0.78 20.31 2.81 1.53
490 9.83 2.73 0.72 4.05 2.06 0.68 9.93 2.74 0.72 21.07 4.10 1.52
510 9.85 3.14 0.71 4.14 1.93 0.69 9.95 3.16 0.70 20.96 4.59 1.48
560 9.70 3.99 0.69 4.44 1.87 0.78 9.80 4.03 0.69 20.31 5.49 1.45
620 9.72 2.91 0.84 4.58 1.94 1.02 9.81 2.93 0.83 20.95 3.83 1.68
665 9.60 2.68 0.94 5.09 2.23 1.11 9.68 2.69 0.93 20.70 3.25 1.96
aFrom the synthetic dataset using the isotropic assumption, i.e., no BRDF correction, the MAG02 algorithm, and our NN algorithm results are shown at all

wavelengths for all synthetic data, “clear” water synthetic data, “moderate/turbid” water synthetic data, and data with large viewing angles.

Table 3. Mean Bias [%] in Derived Nadir Rrs
a

All Cases (N � 80;000) Clean (N � 1568)
Moderate/Turbid
(N � 78;432) θ > 60°�N � 9884�

λ [nm]
No

BRDF MAG02 NN
No

BRDF MAG02 NN
No

BRDF MAG02 NN
No

BRDF MAG02 NN

412 8.57 −0.71 0.11 2.25 −1.71 0.26 8.69 −0.70 0.11 19.04 −1.86 0.32
443 9.22 −1.04 0.05 2.73 −1.80 0.28 9.35 −1.02 0.05 20.27 −2.31 0.26
490 9.80 −2.20 0.11 3.77 −1.82 0.18 9.92 −2.21 0.11 21.05 −3.70 0.43
510 9.82 −2.59 0.04 3.74 −1.56 0.17 9.94 −2.61 0.04 20.92 −4.11 0.31
560 9.67 −3.33 0.06 3.88 −1.37 0.14 9.78 −3.37 0.05 20.26 −4.78 0.29
620 9.55 −1.75 0.17 3.10 −0.91 0.10 9.68 −1.76 0.17 20.73 −2.58 0.50
665 9.31 −1.24 0.24 3.31 −0.78 0.25 9.43 −1.25 0.24 20.38 −1.65 0.77
aFrom the synthetic dataset using the isotropic assumption, i.e., no BRDF correction, the MAG02 algorithm, and our NN algorithm results are shown at all

wavelengths for all synthetic data, “clear” water synthetic data, “moderate/turbid” water synthetic data, and data with large viewing angles.
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should not be used as the criteria for the classification of Case 1
and Case 2 water. The filter returns clean water cases with rel-
atively little influence from CDOM and mineral particles, and
these cases can be considered to be close to Case 1 water. The
same comparison is shown in Fig. 6 as dashed lines. For clean
Case 1 water, our NN algorithm still performs well, with a mean
absolute percentage error of 0.68%–1.11%. The MAG02 algo-
rithm performs best at green and red wavelengths, with a mean
absolute percentage error of 1.87%–2.23%. Detailed compar-
isons of the coefficient of determination (R2), PE, and bias for
all wavelengths are shown in Tables 1–3. In the detailed com-
parison, we also added the results obtained by using the isotropic
assumption, i.e., no BRDF correction, which compares
Rrs�λi ; θ0�withRrs�λi ; θ0; θ;Δϕ� directly. In each table, we show
the comparison in four different ways: all 80,000 cases, clean
water cases, moderate/turbid water cases, and large viewing ze-
nith angle cases. The comparison shows that our NN algorithm
works well in both clean and turbid waters. The performance is
stable and the error is generally less than 1.2%. For large viewing
zenith angles, the error slightly increases but is still within 2%.
The MAG02 algorithm, on the other hand, performs well in
clean Case 1 waters but is slightly worse in turbid waters.
The error increases to a maximum value of 4.03%. For large
viewing zenith angles, the MAG02 algorithm also shows im-
provement over the isotropic treatment, with an error no larger
than 5.5%.

B. NuRADS Field Measurement Data
NuRADS [38] is a compact camera system that takes images of
the upward radiance just below the ocean surface at various
geometry angles and multiple wavelengths centered at 411,
436, 487, 526, 548, and 616 nm. This instrument has been
used in many experiments and a large quantity of in situ data
is available in the NASA SeaBASS validation data base. The
NuRADS measurements provide the upward radiance in the
nadir direction, LNuR

u �λi ; θ0�, and the below surface bidirec-
tional effect (BDE), defined as

BDENuR � LNuR
u �θ0; θ 0;Δϕ; λi�∕LNuR

u �λi ; θ0�; (28)

where LNuR
u �θ0; θ 0;Δϕ; λi� are the measured upward radiances

at non-nadir geometry angles. Here we used the notation BDE
instead of BRDF to avoid confusion because the ratio was com-
puted using the underwater radiance instead of the remote sens-
ing reflectance (Rrs) in Eq. (28). In the SeaBASS database, the
BDE data are given in every 5° for viewing angles in the range of
0°–70° and every 10° for relative azimuth angles in the range of
0°–180°. The solar zenith angles are also given for eachNuRADS
measurement. In our validation test, we selected data that have
viewing zenith angles in the range of 0°–45° and relative azimuth
angles in the range of 0°–180°. Therefore, in each measurement,
there are 171 (9 viewing zenith angles ×19 relative azimuth an-
gles) BDE data points for different geometry angles.

We selected data from four experiments—BP09, SORTIE2,
BIOSOPE, and Ocean Color Calibration & Validation
(OCCV)—as our field measurement validation dataset. The
locations where the four experiments were conducted are
shown in Fig. 7. These four experiments have field measure-
ments of CHL, which are required as input in the MAG02
algorithm. Three filters were applied in the data selection:

(i) we excluded the data from the 616 nm channel due to in-
strument self-shading. (ii) Some of the measurements do not
have data available at all NuRADS wavelengths (excluding
616 nm) due to the measurement procedure and data quality,
but our NN algorithm requires the entire spectrum as input.
Therefore, only measurements that had the entire spectrum of
data available were selected. (iii) The measurements of CHL do
not match the NuRADS measurements in time exactly, so we
only selected the NuRADS measurements that have measured
CHL values available within�3 h. After we apply these filters,
there are 28 measurements from the BP09 experiment, 13 from
the SORTIE2 experiment, 11 from the BIOSOPE experiment,
and 7 from OCCV experiment among the data selected.

There were no measurements of downward irradiance, Ed ,
available in the dataset, so the remote sensing reflectance can-
not be derived directly from the Lu data. We modified our NN
algorithm to train a new neural network that computes the up-
ward radiance directly instead of computing Rrs�λi ; θ0; θ;Δϕ�.
We first generated a training dataset using AccuRT in the same
way as described in Section 2.C. at the NuRADS wavelengths,
but instead of outputting upward radiances above the ocean
surface and computing Rrs�θ0; θ;Δϕ� [see Eq. (23)], we output
the upward radiances just below the surface and used them
directly to train the neural network. Hence, the two groups
in the training dataset are Lu�λi ; θ0; θ 0;Δϕ�∕ cos�θ0� and
Lu�λi ; θ0�∕ cos�θ0�, and the neural network was trained to
compute the nadir radiance, Lu�λi ; θ0�, from the viewing an-
gle-dependent upward radiance, Lu�λi ; θ0; θ 0;Δϕ�. The view-
ing angle-dependent upward radiance was obtained directly
from the NuRADS measurements using Eq. (28), and our
NN algorithm computes the nadir radiance LNN

u �λi ; θ0� from
the angle-dependent radiances. Then we computed the BDE
derived by our NN algorithm as

BDENN � LNN
u �θ0; θ 0;Δϕ; λi�∕LNN

u �λi ; θ0�: (29)

The BDE derived from the NN algorithm was then com-
pared with the NuRADS-measured BDE to quantify the errors.

Fig. 7. Locations of the four experiments selected for validation.
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The MAG02 algorithm requires the geometry angles and
the CHL as input, and we only used the measured CHL at
the surface level. The CHL value and the geometry angles are
then used in the MAG02 algorithm to compute the f ∕Q
factor, and the BDE was determined from [6]

BDEMAG02 �
f �θ0; θ 0;Δϕ; λi�∕Q�θ0; θ 0;Δϕ; λi�

f �θ0; 0; 0; λi�∕Q�θ0; 0; 0; λi�
: (30)

The BDE derived from the MAG02 algorithm was also
compared with the NuRADS-measured BDE to quantify
the errors.

A comparison of the percentage error distributions of the
BDE values derived by the NN algorithm and the MAG02 al-
gorithm is shown in Fig. 8 and more detailed comparisons of
the coefficient of determination (R2), PE, and bias are provided
in Tables 4–6. We note that our NN algorithm works best in
the SORTIE2 experiment. This experiment was conducted in
January 2008 near San Diego Bay, where the water is generally
Case 2 with not only high chlorophyll concentrations
(>4 mg∕m3) but also high sediment particle loading brought
by the San Diego river and suspended around the shore area.
The NN algorithm works well in this area perhaps due to our

use of the Petzold phase function which was derived from data
measured there, although more than 40 years ago. The MAG02
algorithm does not work well for the SORTIE2 experiment as
expected, since the algorithm was developed for Case 1 waters.

The BP09 experiment was conducted in the Ligurian Sea in
March 13–26, 2009. The water in this area can be classified as
Case 2, since nonalgal particles are present in the water and the
concentration of total suspended matter is in the range
0.25 − 1.20 g∕m3 with an average of about 0.55 g∕m3 during
the experiment. However, there was a Spring algal bloom in the
area during the experiment, so the water was generally domi-
nated by algal particles. The CHL was in the range 0.26 −
4.37 mg∕m3 with an average value of about 1.17 mg∕m3.
We found that our NN algorithm and the MAG02 algorithm
worked equally well for this type of water.

The BIOSOPE experiment was conducted in the south
Pacific Ocean in October–December, 2004. The measure-
ments we selected from this experiment are generally Case 1
water and the chlorophyll concentration is less than
0.3 mg∕m3 for the offshore measurements and no more than
1.4 mg∕m3 for the near-shore measurements. We found our
NN algorithm to perform very similar to the MAG02

Fig. 8. Comparison of the percentage error distribution of the BDE derived from NN algorithm (blue) and MAG02 algorithm (red). From top to
bottom, each row shows the comparison for experiments BP09, SORTIE2, BIOSOPE, and OCCV, respectively, and from left to right, the columns
are 411, 436, 487, 526, and 548 nm, respectively.
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algorithm in this Case 1 water; our NN algorithm performs
better in terms of R2 correlation with the in situ measured
data whereas the MAG02 algorithm has slightly smaller mean
absolute percentage error.

The OCCV experiment was conducted in the New Jersey
Bight in May, 2009. The water in this area is also chlorophyll-
dominated. The offshore measurements had chlorophyll con-
centrations of 0.2 mg∕m3, while the near-shore measurements
had chlorophyll concentration of 7.85 mg∕m3. The Hudson
river brings sediment particles to the water in this area, but
in May the concentration of total suspended matter in the sur-
face water of the lower bay area is generally less than 2 g∕m3. A
comparison of BDE values derived by our NN algorithm and
the MAG02 algorithm shows similar results also in this area.
The MAG02 algorithm slightly outperforms our NN algorithm
because the water is dominated by algal particles.

4. CONCLUSIONS

The remote sensing reflectance of oceanic water is generally
anisotropic and this anisotropy must be corrected for in remote
sensing applications that make use of the nadir water-leaving

radiance to derive ocean color products. The correction to nadir
of the water-leaving radiance is also important when comparing
and merging products from different satellite missions. The
standard correction method developed by Morel et al. [6],
based on the Case 1 assumption, is unsuitable for Case 2 waters
such as rivers, lakes, and coastal waters. The standard method
requires the chlorophyll concentration as an input, and such a
requirement cannot easily be fulfilled in remote sensing appli-
cations because the chlorophyll concentration is generally
produced from the corrected remote sensing reflectance.

To meet the need for a correction method that works for
waters that may be turbidity- and/or CDOM-dominated,
we developed an algorithm that directly converts the remote
sensing reflectance from the slant to the nadir viewing direction
using a neural network approach. The neural network was
trained using remote sensing reflectances at slant and nadir di-
rections. The remote sensing reflectance was generated from a
RTM in which scattering phase functions for algal and nonalgal
particles were adopted. Therefore the remote sensing reflec-
tance implicitly contains information about the shape of the
phase function which affects the BRDF. This method uses

Table 4. Coefficient of Determination (R2) of BDE Valuesa

BP09 (N � 4788) SORTIE2 (N � 2223) BIOSOPE (N � 1881) OCCV (N � 1197)

λ [nm] NN MAG02 NN MAG02 NN MAG02 NN MAG02

411 0.872 0.747 0.798 0.528 0.742 0.726 0.700 0.748
436 0.864 0.776 0.803 0.642 0.749 0.688 0.626 0.742
487 0.912 0.872 0.888 0.716 0.686 0.729 0.816 0.876
526 0.888 0.837 0.885 0.863 0.590 0.516 0.822 0.841
548 0.891 0.816 0.894 0.828 0.576 0.459 0.852 0.859
aDerived fromNuRADSmeasurements using the NN andMAG02 algorithms. Results are shown at all wavelengths for the four validation datasets: BP09, SORTIE,

BIOSOPE, and OCCV.

Table 5. Mean Absolute PE [%] of BDE Valuesa

BP09 (N � 4788) SORTIE2 (N � 2223) BIOSOPE (N � 1881) OCCV (N � 1197)

λ [nm] NN MAG02 NN MAG02 NN MAG02 NN MAG02

411 3.208 3.344 3.742 9.131 2.998 2.700 5.581 4.668
436 4.255 3.362 4.473 9.459 3.319 2.978 5.587 4.886
487 2.996 3.214 2.806 9.757 3.727 2.790 3.392 3.470
526 3.750 3.514 3.732 9.787 4.217 3.639 4.067 3.415
548 5.275 4.994 4.896 10.511 4.685 4.132 5.630 3.218
aDerived fromNuRADSmeasurements using the NN andMAG02 algorithms. Results are shown at all wavelengths for the four validation datasets: BP09, SORTIE,

BIOSOPE, and OCCV.

Table 6. Mean Bias [%] of BDE Valuesa

BP09 (N � 4788) SORTIE2 (N � 2223) BIOSOPE (N � 1881) OCCV (N � 1197)

λ [nm] NN MAG02 NN MAG02 NN MAG02 NN MAG02

411 2.291 1.149 3.368 9.035 −1.621 −1.395 0.475 1.611
436 3.844 2.386 4.026 9.388 −0.754 −0.984 2.924 3.463
487 2.472 2.461 2.458 9.390 0.068 −0.303 2.432 2.737
526 3.117 2.571 3.281 9.496 −1.889 −0.720 2.785 2.251
548 4.499 3.183 4.697 9.831 −1.243 −0.636 4.907 2.691
aDerived fromNuRADSmeasurements using the NN andMAG02 algorithms. Results are shown at all wavelengths for the four validation datasets: BP09, SORTIE,

BIOSOPE, and OCCV.
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spectral remote sensing reflectances as input; hence, it does not
require any prior knowledge of the water constituents or their
optical properties. Tests based on synthetic data show that this
method is sound and accurate. Validation using NuRADSmea-
surements [38] shows that our neural network method works
equally well compared to the standard method for Case 1 or
chlorophyll-dominated waters. For Case 2 waters, a significant
improvement over the standard method was found, especially
for waters dominated by sediment particles.

Funding. National Aeronautics and Space Administration
(NASA).
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